

BiOWiSH™ Aqua

BiOWiSH™ Aqua Reduces High Ammonia (Total Nitrogen) Loading in South Korean Landfill Leachate

Executive Summary

South Korea's KM Green Landfill tested BiOWiSH[™] Aqua as an environmentally friendly way to reduce TN levels and meet discharge limits. BiOWiSH[™] Aqua not only reduced TN levels well below the required 30 mg/l discharge limit in as little as 3 weeks, but also eliminated the need for chemicals in the TN reduction process.

Background

KM Green Co., Ltd, is a waste processing company that runs South Korea's largest solid waste disposal site.

The landfill site is comprised of 600,000 m² in the Gyeonbuk Gumi areas and follows best management practices. They are focused on best-in-class environmental preservation.

BiOWiSH™ Aqua

- Reduces sludge production and handling
- Increases plant capacity; Capital avoidance
- Reduces aeration; Energy savings
- Reduces need for chemical additives
- Improves plant stability
- Reduces hydrogen sulfide, ammonia and nitrates

Fig. 1. Google Image of Treatment Site

This landfill facility generates approximately 25m³/day of leachate containing high levels (>1000 ml/l) of Ammonia Nitrogen. The existing treatment process design was not able to comply with the required Ammonia Nitrogen discharge standards.

The treatment plant has the following treatment stages:

- 1. Chemical Treatment: Deaeration Tower
- 2. Biological Treatment: Total Bioreactor Volume = 1200 m³
- 3. Chemical Treatment: adding chemical to enhance TN removal
- 4. Filtration

The biological treatment with hydraulic retention time greater than 30 days showed less than 50% reduction in TN values. This was a clear indication that the biology in the reactors was incapable to achieve effective TN reduction through nitrification.

Process Flow Diagram

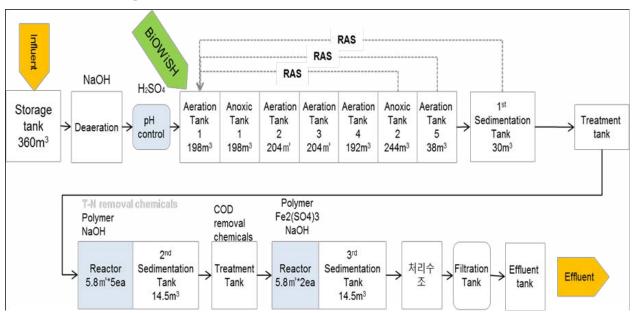


Fig. 2. Leachate Treatment Plant PFD at KM Green Landfill

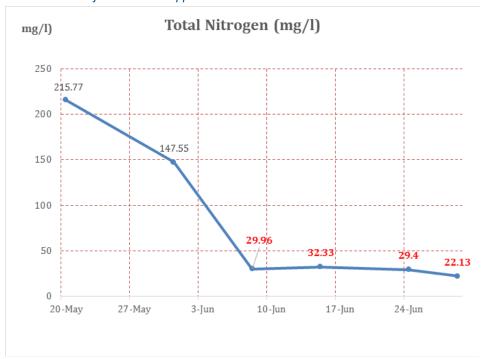
Objective

The main objective of the BiOWiSH™ bioaugmentation program was to enhance TN reduction in the biological treatment, achieve discharge levels below 30 mg/l and reduce the consumption of several chemicals used for TN removal after the biological treatment.

Solution

A 1000-liter tote was prepared once a week by dissolving 3.5 kg of BiOWiSH™ Aqua in water. This active solution was dosed on continuous basis into the first aeration basin.

Fig. 3. 1000 Liter Tote for Dosing BiOWiSH™


Fig. 4. Dosing Point in Aeration Tank 1

Results

Bioaugmentation with BiOWiSH™ Aqua successfully achieved TN levels below 30 mg/l in the first sedimentation tank within 3 weeks of dosing. From week 4 to week 7, the plant management stopped using TN removal chemicals and at the same time they could achieve TN well below the discharge standards.

Sampling Date	Total Nitrogen (mg/l)
20-May	215.77
31-May	147.55
8-Jun	29.96
15-Jun	32.33
24-Jun	29.40
29-Jun	22.13

Table 1. Results after BiOWiSH™ Application

Graph 1. Total Nitrogen Reduction after BiOWiSH™ Implementation

Discussion

BiOWiSH™ Aqua was instrumental in boosting biological TN removal, achieving the desired Total Nitrogen levels below 30 mg/l. It also helped eliminate the need to use chemicals for removing the excess TN after biological treatment.

The bio-augmentation program with BiOWiSH™ Aqua provided a cost-effective treatment to meet the client's requirement.

Contact us:

Tel: +1 312 572 6700 Fax: +1 312 572 6710

Email: wastewater@biowishtech.com

Web: biowishtech.com

 $\mathsf{BiOWiSH^{TM}}$ is a registered trademark of BiOWiSH Technologies International, Inc.